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Time-domain BEM solution of convection–diffusion-type
MHD equations
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SUMMARY

The two-dimensional convection–diffusion-type equations are solved by using the boundary element
method (BEM) based on the time-dependent fundamental solution. The emphasis is given on the solution
of magnetohydrodynamic (MHD) duct flow problems with arbitrary wall conductivity. The boundary and
time integrals in the BEM formulation are computed numerically assuming constant variations of the
unknowns on both the boundary elements and the time intervals. Then, the solution is advanced to the
steady-state iteratively. Thus, it is possible to use quite large time increments and stability problems
are not encountered. The time-domain BEM solution procedure is tested on some convection–diffusion
problems and the MHD duct flow problem with insulated walls to establish the validity of the approach.
The numerical results for these sample problems compare very well to analytical results. Then, the BEM
formulation of the MHD duct flow problem with arbitrary wall conductivity is obtained for the first time
in such a way that the equations are solved together with the coupled boundary conditions. The use of
time-dependent fundamental solution enables us to obtain numerical solutions for this problem for the
Hartmann number values up to 300 and for several values of conductivity parameter. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The boundary element method (BEM) has become increasingly popular in the numerical solu-
tion of time-dependent partial differential equations occurring in many branches of science and
engineering. There are several different BEM approaches available for time-dependent problems
as the Laplace transform method, dual reciprocity boundary element method (DRBEM) and the
time-dependent fundamental solution method. The Laplace transform method needs the inverse
transform to recover the solution. DRBEM results in a system of ordinary differential equations
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to be solved by using another numerical scheme for the time derivative in the governing equation,
and usually finite difference method (FDM) is chosen for the time integration. But, due to the
stability problems very small time increment must be used and this is computationally expensive
and time consuming.

The BEM applications of the time-dependent convection–diffusion problems are due to Grigoriev
and Dargush [1–3]. In these studies, they have used time-dependent fundamental solution together
with higher-order boundary elements. Linear, quadratic and quartic time interpolation functions
are introduced for exact integrations which make the computations quite complex. Although, the
efficiency of their BEM solutions increases with the increase of the Peclet number of the flow,
they need to use small time steps. DeSilva et al. [4] have been attempted to develop a BEM
formulation for transient conduction–convection problems involving spatially varying convective
velocities. The fundamental solution corresponding to a transient conduction–convective problem
with a constant velocity is utilized. The variable part of the convective velocity goes to the domain
integral in this formulation.

The two-dimensional transient MHD flows in channels(ducts) are governed by coupled
convection–diffusion-type equations for the velocity and the induced magnetic field. When the
magnetic field is zero on the walls (insulated walls), the equations and the boundary conditions
can be decoupled but for the arbitrary wall conductivity case the decoupling of the equations makes
the boundary conditions coupled. Thus, it is quite difficult to treat the equations with BEM for
arbitrary wall conductivity. The numerical solutions of time-dependent MHD flow equations have
been given by Singh and Lal [5] in two dimensions and by Salah et al. [6] in three dimensions
using finite element method (FEM). The time derivative was evaluated by a finite-difference-like
expression. Seungsoo and Dulikravich [7] proposed an FDM scheme for three-dimensional un-
steady MHD flow together with temperature field. They have used explicit Runge–Kutta method
for step-by-step computations in time. Sheu and Lin [8] presented convection–diffusion–reaction
model for solving unsteady MHD flow applying an FDM on non-staggered grids with a transport
scheme in each ADI(predictor–corrector) spatial sweep. The solution algorithm in each of these un-
steady MHD flow studies is based on explicit time-stepping schemes starting with the given initial
conditions. Thus, the time increment must be taken very small to deal with the stability problems,
and therefore they are computationally expensive. A numerical scheme which is a combination of
the DRBEM in space and the differential quadrature method (DQM) in time has been proposed
by Bozkaya and Tezer-Sezgin [9] for solving unsteady MHD flow problem in a rectangular duct
with insulating walls. The solution procedure can be used with large time increments for obtaining
the solution directly at the required time level. Computations have been carried out for moderate
values of Hartmann number.

In this paper, fully transient solution procedure is performed using the BEM based on the time-
dependent fundamental solution for convection–diffusion-type equations. Compared with DRBEM,
FEM and FDM, less unwanted information about internal points is obtained using this approach.
Since the fundamental solution is time dependent, time steps can be much larger than the finite
difference time stepping. Constant variations of the solution and its normal derivative are used both
on the boundary elements and on the time intervals and the integrals in the BEM formulation are
evaluated numerically. Time integrals need higher-order numerical schemes for obtaining accurate
solutions. The advantage of the solution procedure lies in taking quite large time steps for the
computations and stability problems do not occur.

The main application of the proposed scheme is the solution of unsteady MHD flow problem
in a rectangular duct with arbitrary wall conductivity. The algorithm is tested first on some
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convection–diffusion problems with Dirichlet and Neumann boundary conditions in which the
exact solutions are available. The unsteady MHD duct flow problem with insulated walls is
also included to establish the validity of the approach comparing the results with exact solution.
For the MHD flow in a duct with arbitrary wall conductivity, the BEM formulation with time-
dependent fundamental solution is presented for the two equations as a whole with coupled
boundary conditions. This approach is particularly well suited for transient analysis of unsteady
MHD flow problems. Solutions are obtained for values of Hartmann number up to 300 and for
varying wall conductivity parameter. The well-known characteristics of the behaviour of MHD
flow together with wall conductivity effect are presented in terms of velocity and induced magnetic
field graphs.

2. BEM FORMULATION OF THE CONVECTION–DIFFUSION-TYPE EQUATIONS USING
TIME-DEPENDENT FUNDAMENTAL SOLUTION

The governing equation for the time-dependent convection–diffusion-type problems can be
expressed as

�T (x, t)

�t
+ v · ∇T (x, t) = �∇2T (x, t), x∈ �, t>0 (1)

where x= (x, y) are spatial coordinates, v= (v1, v2) are the velocity components of the flow and
�= 1/Pe is the diffusivity constant, Pe is the Peclet number.

This equation represents an initial-boundary value problem for the temperature T (x, t) with the
given initial condition

T (x, 0) = T0(x) at t = 0 for x∈ � (2)

and the given Dirichlet- and Neumann-type boundary conditions

T (x, t) = T̄ (x, t) on x∈ �1

�T
�n

(x, t) = q̄(x, t) on x∈ �2

(3)

where � =�1+�2 is the boundary of the domain � ⊂ R2 and n= (n1, n2) is the outward normal.
T0(x), T̄ (x, t) and q̄(x, t) are given functions.

The BEM is applied to Equation (1) for representing it in an equivalent boundary integral
equation by using the time-dependent fundamental solution [1].

The 2D time-dependent fundamental solution of Equation (1) is of the form [10]

T ∗(�, �; x, t) = H [� − t]
4��(� − t)

e(−|x−�+v(�−t)|2/4�(�−t)) (4)

where � = (�1, �2) and x= (x, y) are the source (fixed) and field (variable) points in �, � and t
are the maximum time and time variation, respectively. H denotes the Heaviside function.

Now the method of weighted residuals [11] gives∫ �

0

∫
�

(
�T
�t

+ v · ∇T − � ∇2T

)
T ∗ d� dt = 0 (5)
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Integrating by parts the first-order time and space derivatives, assuming the flow has constant
velocity components and using Green’s second identity for the Laplacian part we obtain

−
∫ �

0

∫
�

(
�T ∗

�t
+ v · ∇T ∗ + �∇2T ∗

)
T d� dt +

∫
�
(T T ∗|t=� − T T ∗|t=0) d�

+
∫ �

0

∫
�

{
vnT T ∗ − �T ∗ �T

�n
+ �T

�T ∗

�n

}
d� dt = 0 (6)

where vn = v · n= v1n1 + v2n2.
The fundamental solution T ∗ satisfies

T ∗(�, �; x, t) = 0 when t�� (7)

because of the property of the Heaviside function and also it is provided to satisfy the adjoint of
Equation (1), i.e.

�T ∗

�t
(�, �; x, t) + v · ∇T ∗(�, �; x, t) + � ∇2T ∗(�, �; x, t) =−�(� − x)�(� − t) (8)

where � is the Dirac delta function.
Thus, substitution of (7) and (8) into Equation (6) with the property of Dirac delta function

gives

c(�)T (�, �) +
∫ �

0

∫
�

{
vn T ∗(�, �; x, t) + �

�T ∗

�n
(�, �; x, t)

}
T (x, t) d� dt

=
∫ �

0

∫
�

�T ∗(�, �; x, t)�T
�n

(x, t) d� dt +
∫

�
T (x, 0)T ∗(�, �; x, 0) d� (9)

where

c(�) =
⎧⎨⎩1 − �

2�
if � ∈ �

1 if � ∈ � − �
(10)

� being the internal angle at the point �.
The boundary � is discretized by using N constant boundary elements. The contributions from

a source point to a field point used in the BEM discretization are shown in Figure 1(a) with the
distance functions rin = |xn − �i | and r jn = |xn − � j |. Figure 1(b) presents the mesh obtained by
using N (e.g. N = 20) boundary nodes and a uniform collocation of (N/4)2 (e.g. (N/4)2 = 25)
internal points. The time interval [0, �] is divided into M subintervals. We assume constant variation
for T and its normal derivative on each time step [tm−1, tm] and over each boundary element �n
such that

T (x, t) ≈ T (xn, tm) = Tn(tm)

�T
�n

(x, t) ≈ �T
�n

(xn, tm) =
(

�T
�n

)
n
(tm)

(11)
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Figure 1. (a) Contributions from a source point to a field point. (b) Discretization of the domain � with
constant boundary elements with a uniform grid density.

where xn denotes the centre of the nth boundary element. Then, integral equation (9) yields

ci Ti (tm) +
N∑

n=1
Tn(tm)

∫ tm

tm−1

∫
�n

(
vnT ∗(�i , tm; x, t) + �

�T ∗

�n
(�i , tm; x, t)

)
d�n dt

=
N∑

n=1

(
�T
�n

)
n
(tm)

∫ tm

tm−1

∫
�n

� T ∗(�i , tm; x, t) d�n dt

+
∫

�
T (x, tm−1)T

∗(�i , tm; x, tm−1) d� (12)

for one boundary node �i . Now ranging i and n from 1 to N (for each fixed choice of source point
�i = (�i1, �

i
2) from 1 to N and ranging the field point xn = (xn, yn) also from 1 to N ), we obtain

an N × N linear system of algebraic equations

H{T } − G

{
�T
�n

}
= F (13)

The entries of matrices H , G and vector F are given as

Hin =
∫ tm

tm−1

∫
�n

(
vnT ∗

i + �

(
�T ∗

�n

)
i

)
d�n dt + 1

2
�in

Gin =
∫ tm

tm−1

∫
�n

�T ∗
i d�n dt

Fi =
∫

�
T (x, tm−1) T

∗
i

∣∣∣∣
t=tm−1

d�

(14)

where

T ∗
i = T ∗(�i , tm; x, t)(

�T
�n

∗)
i

= �T
�n

(�i , tm; x, t)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1969–1991
DOI: 10.1002/fld



1974 N. BOZKAYA AND M. TEZER-SEZGIN

in two-dimensional space and � is the Kronecker delta function. The substitution of the given
boundary conditions (3) into Equation (13) results in a linear system of equations

Ax = b (15)

which can be solved by Gaussian elimination for the unknown vector x . Here, x contains the
unknown T and �T/�n values on the boundary. Then, these boundary values are used in Equation
(12) by taking ci = 1, to compute T values at each interior point,

Ti (tm) = −
N∑

n=1
H̄in Tn(tm) +

N∑
n=1

Gin

(
�T
�n

)
n
(tm) + Fi (16)

where

H̄in =
∫ tm

tm−1

∫
�n

(
vnT ∗

i + �

(
�T ∗

�n

)
i

)
d�n dt

This time the contributions in the entries (the distance |xn − �i |) will be from an interior node
�i = (�i1, �

i
2) to the nth boundary element.

3. BEM APPLICATION TO THE MHD DUCT FLOW EQUATIONS

We consider the unsteady, laminar flow of an incompressible, viscous and electrically conducting
fluid driven by a constant applied pressure gradient in a rectangular duct. The axis of the duct is
chosen as the z-axis. A uniform magnetic field of strength (intensity, inductance) B0 is imposed
along the x-axis. The fluid motion is fully developed (i.e. the duct is assumed to be of infinite
length and end effects are neglected). It is assumed that the sides of the duct are electrically
insulated or have variable conductivity.

The basic equations governing the MHD duct flow have been obtained fromMaxwell’s equations
of the electromagnetic field, Ohm’s law, equation of continuity and the Navier–Stokes equations
[12]. There is only one component Vz(x, y, t) of the velocity field and one component Bz(x, y, t) of
the induced magnetic field in the z-direction. All physical quantities except pressure are independent
of z, the magnetic field vector takes the form B = (B0, 0, Bz(x, y, t)). We also assume that
displacement currents are negligible. Thus, the z components of the governing equations become

∇2Bz + ��eB0
�Vz
�x

= 0

�∇2Vz + B0

�e

�Bz

�x
= �p

�z

(17)

where �, � are the electrical conductivity and the coefficients of viscosity of the fluid, respectively.
�e is the magnetic permeability and p is the pressure. So the partial differential equations (in
non-dimensional form) in terms of velocity V (x, y, t) and induced magnetic field B(x, y, t) are

∇2V + M
�B
�x

= −1 + �V
�t

∇2B + M
�V
�x

= �B
�t

(18)
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where non-dimensionalization was performed with a characteristic length L0 and a characteristic
velocity V0 (mean axis velocity). The dimensionless variables are

V = Vz
V0

, B = ��−1/2 Bz

V0�e
, V0 = −L2

0(�p/�z)
�

and M is the Hartmann number given by

M = B0L0
√

�√
�

Now the BEM approach, given for the general convection–diffusion-type equations in Section 2,
is used to solve the unsteady MHD flow problem in a square duct with insulating walls or with
variable conductivity on the walls. First, we present the BEM application to the unsteady MHD
flow problem in a square duct with insulated walls, which has an exact solution.

3.1. MHD flow in a rectangular duct with insulated walls

The non-dimensional equations of the unsteady, laminar, viscous flow of an incompressible and
electrically conducting fluid, in terms of the velocity V and the induced magnetic field B are

∇2V + M
�B
�x

= −1 + �V
�t

∇2B + M
�V
�x

= �B
�t

(19)

in the rectangular section � of a duct with the boundary and initial conditions

V (x, y, t) = 0, B(x, y, t) = 0 (x, y) ∈ ��

V (x, y, 0) = 0, B(x, y, 0) = 0 (x, y)∈ �
(20)

If we make the change of variables

U1 = V + B, U2 = V − B (21)

the MHD equations in (19) can be decoupled as

∇2U1 + M
�U1

�x
= −1 + �U1

�t

∇2U2 − M
�U2

�x
= −1 + �U2

�t

(x, y, t) ∈ �× [0, ∞) (22)

with the corresponding boundary and initial conditions

U1(x, y, t) = 0, U2(x, y, t) = 0 (x, y)∈ ��

U1(x, y, 0) = 0, U2(x, y, 0) = 0 (x, y)∈ �
(23)

A further simplification by the transformations

MU1 = MW1 − x, MU2 = MW2 + x (24)
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results in two initial and boundary value problems

�W1

�t
− M

�W1

�x
= ∇2W1 in �,

�W2

�t
+ M

�W2

�x
=∇2W2 in �

W1(x, y, t) = x

M
on ��, W2(x, y, t) = − x

M
on ��

W1(x, y, 0) = x

M
, W2(x, y, 0) = − x

M

(25)

Now, the BEM approach in Section 2 can be applied to these convection–diffusion-type
problems.

The decoupled equations in (25) can be weighted as∫ �

0

∫
�

(
�W1

�t
− M

�W1

�x
− ∇2W1

)
W ∗

1 d� dt = 0∫ �

0

∫
�

(
�W2

�t
+ M

�W2

�x
− ∇2W2

)
W ∗

2 d� dt = 0

(26)

where W ∗
1 and W ∗

2 are the corresponding time-dependent fundamental solutions obtained from (4),
i.e.

W ∗
1 (�, �; x, t) = H [� − t]

4�(� − t)
e(−|x−�+u (�−t)|2/4(�−t))

W ∗
2 (�, �; x, t) = H [� − t]

4�(� − t)
e(−|x−�+v(�−t)|2/4(�−t))

(27)

which are only differing in the coefficients u= (−M, 0) and v= (M, 0), respectively. � = (�1, �2)
and x= (x, y) are the source (fixed) and field (variable) points in �. The source and field points
may vary from boundary nodes to boundary elements, whereas for the interior computations source
point is taken inside of the domain �.

Applying integration by parts and Green’s second identity to the equations in (26), one can
obtain the boundary integral equations

c(�)W1(�, �) +
∫ �

0

∫
�

(
unW ∗

1 + �W ∗
1

�n

)
W1(x, t) d� dt

=
∫ �

0

∫
�
W ∗

1
�W1

�n
(x, t) d� dt +

∫
�
W1(x, 0)W ∗

1 (�, �; x, 0) d� (28)

c(�)W2(�, �) +
∫ �

0

∫
�

(
vnW ∗

2 + �W ∗
2

�n

)
W2(x, t) d� dt

=
∫ �

0

∫
�
W ∗

2
�W2

�n
(x, t) d� dt +

∫
�
W2(x, 0)W ∗

2 (�, �; x, 0) d� (29)

where un =u · n= − Mn1 and vn = v · n= Mn1.
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Then, the discretization of the boundary with N constant boundary elements given in Figure 1
with the assumption of constant variations for W1 and W2 and their normal derivatives along each
time interval [tm−1, tm] gives the following discretized equations:

ciW1i (tm) +
N∑

n=1
W1n(tm)

∫ tm

tm−1

∫
�n

(
unW ∗

1i + �W ∗
1i

�n

)
d�n dt

=
N∑

n=1

(
�W1

�n

)
n
(tm)

∫ tm

tm−1

∫
�n

W ∗
1i d�n dt+

∫
�
W1(x, tm−1)W

∗
1 (�i , tm; x, tm−1) d� (30)

ciW2i (tm) +
N∑

n=1
W2n(tm)

∫ tm

tm−1

∫
�n

(
vnW ∗

2i + �W ∗
2i

�n

)
d�n dt

=
N∑

n=1

(
�W2

�n

)
n
(tm)

∫ tm

tm−1

∫
�n

W ∗
2i d�n dt+

∫
�
W2(x, tm−1)W

∗
2 (�i , tm; x, tm−1) d� (31)

Thus, we obtain the N × N linear system of equations

H{W1} − G

{
�W1

�n

}
= F (32)

H̃{W2} − G̃

{
�W2

�n

}
= F̃ (33)

where the entries of the coefficient matrices H,G, H̃ , G̃ and right-hand-side vectors F, F̃ are
similarly defined as in (14). The insulated boundary conditions W1 = x/M and W2 = −x/M are
inserted to systems (32) and (33) by rearranging the equations to include the known values to the
right-hand sides of the equations. This yields the linear system of algebraic equations

Ax = b (34)

Ãx̃ = b̃ (35)

where x contains the unknown �W1/�n values and x̃ contains the unknown �W2/�n values on the
boundary. All the known boundary information are combined with the vectors F and F̃ forming
the right-hand sides b and b̃. The solution of the final systems give the required unknowns �W1/�n
and �W2/�n on the boundary. We take ci = 1 in the discretized Equations (30) and (31) in order
to compute W1 and W2 at the interior points. Then, one can obtain the original unknowns V and
B by backward substitution through transformations (24) and (21).

3.2. MHD flow in a rectangular duct having variable wall conductivity

Having variable electrical conductivity on the walls of the duct means we have mixed-type boundary
conditions for the magnetic field, i.e.

�B
�n

+ 	B = 0 (36)
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Figure 2. Square section of the duct with variable wall conductivity.

on the boundary of the flow region shown in Figure 2. When 	 = 0, the walls are perfectly
conducting, when 	 → ∞ the walls are insulated. For the other values of 	>0, the walls are having
variable electrical conductivity. Therefore, this unsteady MHD duct flow problem is also defined
by the non-dimensional Equations (19):

∇2V + M
�B
�x

= −1 + �V
�t

∇2B + M
�V
�x

= �B
�t

(37)

with the zero initial conditions

V (x, y, 0) = 0, B(x, y, 0) = 0 (x, y)∈ � (38)

and the zero boundary condition for velocity and the mixed-type boundary condition for the induced
magnetic field

V (x, y, t) = 0,
�B
�n

(x, y, t) + 	B(x, y, t) = 0 (x, y) ∈ �� (39)

Now using the transformations in (21) and (24), one can obtain the decoupled form of the
equations in (37) in terms of W1 and W2

�W1

�t
− M

�W1

�x
− ∇2W1 = 0

�W2

�t
+ M

�W2

�x
− ∇2W2 = 0

(40)

with the decoupled initial conditions

W1(x, y, 0) = x

M
, W2(x, y, 0)= −x

M
(x, y)∈ � (41)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1969–1991
DOI: 10.1002/fld



TIME-DOMAIN BEM SOLUTION OF CONVECTION–DIFFUSION-TYPE MHD EQUATIONS 1979

But this time, we have coupled boundary conditions such that

W1 + W2 = 0

�W2

�n
− �W1

�n
= 	(W1 − W2) − 2

M

�x
�n

− 2	
x

M

on �� (42)

because of the mixed-type boundary condition for the induced magnetic field.
However, we can still apply the BEM using the time-dependent fundamental solution to the

resulting equations in (40) which are defining two convection–diffusion-type equations. Thus, the
BEM applications result in the same linear system of equations as (32) and (33):

H{W1} − G

{
�W1

�n

}
= F (43)

H̃{W2} − G̃

{
�W2

�n

}
= F̃ (44)

Since the boundary conditions are coupled, we do not know directly neither W1 and W2 nor
their normal derivatives on the boundary. Thus, the N × N systems in (43) and (44) cannot be
converted into Ax = b and Ãx̃ = b̃ forms as in the insulated wall case explained in Section 3.2.
Then, we observe that the final systems should have to be solved together by using the coupled
boundary conditions and we present a new solution procedure in this sense.

When the boundary conditions in (42) are substituted in (44), one can obtain

−H̃{W1} − G̃

{
�W1

�n

}
− 2	G̃{W1} + 2

M
G̃

{
�x
�n

+ 	x

}
= F̃ (45)

and it can be rewritten as

(−H̃ − 2	G̃){W1} − G̃

{
�W1

�n

}
= F̃ − 2

M
G̃

{
�x
�n

+ 	x

}
(46)

In this system, {�x/�n + 	x} is an N × 1 vector of which entries are functions of x and can
be computed easily at the boundary nodes. Thus, the right-hand side of Equation (46) is known
but on the left-hand side of the equation, we have two unknown vectors {W1} and {�W1/�n} as
in Equation (43). Now the systems in (43) and (46) are combined in such a way that we have a
linear system of the form Ax = b at the end

H −G

−H̃ − 2	G̃ −G̃
2N×2N

W1

�W1

�n
2N×1

=
F

F̃ − 2

M
G̃

{
�x
�n

+ 	x

}
2N×1

(47)

Finally, we solve the 2N × 2N system above forW1 and its normal derivative on the boundary by
using a solver which uses the LU factorization of the coefficient matrix based on Gauss elimination
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with partial pivoting. Then by using relationship (42), W2 and its normal derivative are computed
on the boundary. For the internal values of W1 and W2, we make use of Equations (30) and (31)
as explained in Section 3.1. Then, the transformations (21) and (24) give the required unknowns
V and B in � in turn.

4. NUMERICAL RESULTS AND DISCUSSION

4.1. Convection–diffusion-type problems

We first consider two convection–diffusion problems for testing the accuracy of our solution
procedure. The domain of the first problem is a unit square in the (x, y)-plane with the Dirichlet-
type boundary conditions. The second problem is defined in a rectangular region 0�x�1 and
0�y�0.7 and it is solved with Dirichlet- and Neumann-type boundary conditions. All integrations
appearing in the entries of the BEM matrices are computed numerically by using Gauss Legendre
integration with 16–64 points. The solutions are obtained at steady state, which is reached when
the absolute difference between the solutions of two consecutive time levels is less than 10−5 and
they are compared with the available steady-state exact solutions. The computations are carried
out by using only 20 constant boundary elements and interior values are obtained for presenting
the solutions in terms of graphics. Comparing to other time integration methods, we are able to
use quite large time increments (e.g. �t = 1.0, 2.0) in this procedure since the time-dependent
fundamental solution is used.

4.1.1. Problem 1 (Grigoriev and Dargush [3]). We solve the convection–diffusion equation

�T
�t

+ �T
�x

+ 1

2

�T
�y

=∇2T, 0�x�1, 0�y�1, t>0

with the non-zero initial condition

T (x, y, 0) = exp(−((x + 1/4)2 + y2)/4)

and the time-dependent Dirichlet-type boundary conditions

T (0, y, t) = 1

1 + t
exp[−((1/4 − t)2 + (y − t/2)2)/(4(1 + t))], 0<y<1

T (1, y, t) = 1

1 + t
exp[−((5/4 − t)2 + (y − t/2)2)/(4(1 + t))], 0<y<1

T (x, 0, t) = 1

1 + t
exp[−((x − t + 1/4)2 + (t/2)2)/(4(1 + t))], 0<x<1

T (x, 1, t) = 1

1 + t
exp[−((x − t + 1/4)2 + (1 − t/2)2)/(4(1 + t))], 0<x<1
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Figure 3. Solution of the convection–diffusion problem 1 at y = 0.5 with �t = 1.0.

Figure 4. Solution of the convection–diffusion problem 2 at y = 0.35 with �t = 2.0.

The exact solution is given by

T (x, y, t) = 1

1 + t
exp[−((x − t + 1/4)2 + (y − t/2)2)/(4(1 + t))]
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Figure 5. Velocity for M = 30, � = 1.2.

Figure 6. Induced magnetic field for M = 30, � = 1.2.

The boundary of the square region [0, 1] × [0, 1] is discretized with 20 constant boundary
elements and 25 equally spaced interior points. Figure 3 shows the behaviour of the solution at
y = 0.5 along the x-direction at several time levels. After 27 time steps with the time increment
�t = 1.0, the solution approaches the steady state, which is zero, in a good agreement with the
exact solution.
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Figure 7. Velocity for M = 200, � = 0.15.

Figure 8. Induced magnetic field for M = 200, � = 0.15.

4.1.2. Problem 2 (Partridge and Sensale [13]). The aim of considering this problem is the simi-
larity with the MHD duct flow equations which will be considered in Section 4.2.

The convection–diffusion equation is given

∇2T − log

(
10

300

)
�T
�x

= �T
�t

, 0�x�1, 0�y�0.7, t>0
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Figure 9. Velocity for M = 5, 	 = 0, �t = 0.5, �= 3.0.

with the Dirichlet- and Neumann-type boundary conditions

T (0, y, t) = 300,

T (1, y, t) = 10,
0�y�0.7, t>0

�T
�n

(x, 0, t) = 0,

�T
�n

(x, 0.7, t) = 0,

0�x�1, t>0

and the zero initial condition

T (x, y, 0) = 0

We have used again 20 constant boundary elements for the discretization of the boundary of
the rectangular domain. The results are obtained at the steady-state t = 8.0 after four time steps
with the time increment �t = 2.0. Figure 4 shows the agreement of the numerical solution with the
steady-state exact solution [14], at the centre point of the interval 0�y�0.7 along the x-direction.
It is clear that for small values of �t , one needs more iteration to reach the steady-state solution.

4.2. The unsteady MHD duct flow

The unsteady MHD equations defining laminar, viscous flow of an incompressible and electrically
conducting fluid in a square duct with variable wall conductivity are solved. The resulting BEM
matrix equations are arranged in such a way that we are allowed to solve the equations with the
coupled boundary conditions caused by the variable conductivity on the walls.
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Figure 10. Induced magnetic field for M = 5, 	= 0, �t = 0.5, � = 3.0.

Figure 11. Velocity for M = 5, 	 = 30, �t = 0.5, � = 2.5.

To establish the validity of the numerical results, we first solve the unsteady MHD flow of
an incompressible fluid in a square duct with insulated walls having a cross-section −1�x, y�1.
The numerical results are obtained until reaching the steady-state solution as � → ∞ for the
time domain (0, �) with an accuracy 10−5. In the discretization of the boundary of the duct,
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Figure 12. Induced magnetic field for M = 5, 	= 30, �t = 0.5, �= 2.5.

Figure 13. Velocity for M = 20, 	= 0, �t = 0.5, � = 2.0.

we use constant boundary elements ranging from 80 to 100. About 400–625 interior points are
used for drawing graphics. In the time domain (0, �), we assume again constant variation over
each time step. We have obtained the solution of this problem for Hartmann number values up
to 300.
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Figure 14. Induced magnetic field for M = 20, 	 = 0, �t = 0.5, �= 2.0.

Figure 15. Velocity for M = 300, 	= 0, �t = 0.03, �= 0.09.

In Figures 5–8, the velocity and the induced magnetic field contours presented at the steady
state, respectively, for Hartmann numbers M = 30, 200. We observe that as M increases we need
smaller �t values to increase the accuracy. However, either with small M (e.g. 30) or larger M
(e.g. 200), the number of steps of computations for reaching steady-state (rate of convergence) is
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Figure 16. Induced magnetic field for M = 300, 	= 0, �t = 0.03, � = 0.09.

Figure 17. Velocity for M = 50, 	= 5, �t = 0.5, � = 1.5.

always around 3 and 5 with an accuracy 10−5. We can see from Figures 5–8 that our steady-state
solutions for the velocity and the induced magnetic field agree very well with the exact solution
given by Sherliff [15]. One can also notice from Figures 5 and 7 that as M increases velocity
becomes uniform at the centre of the duct and contour values are decreased when getting closer
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Figure 18. Induced magnetic field for M = 50, 	 = 5, �t = 0.5, �= 1.5.

Figure 19. Velocity for M = 300, 	= 5, �t = 0.03, �= 0.09.

to the insulated walls, i.e. V has its maximum value through the centre of the duct and forms
boundary layer close to the walls which are the well-known behaviours of the MHD flow.

Now we consider the unsteady MHD flow in a duct with arbitrary conductivity on the walls of
the duct. Similar to the insulated wall case, the BEM is employed to the governing equations using
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Figure 20. Induced magnetic field for M = 300, 	= 5, �t = 0.03, � = 0.09.

N = 80, 100 constant boundary elements with L = 400, 625 interior nodes, respectively. Again
constant variation is assumed for each time step and the problem is solved on the time domain
(0, �) as � →∞ up to Hartmann number values 300. Figures 9–12 present a comparison between
the behaviour of the numerical results for variable conductivity case (	 = 0, 30, respectively) and
the exact solution for the insulated wall case at the steady state for M = 5.

One can observe that when 	 = 0 which is the pure conducting wall case, the induced magnetic
field contours are perpendicular to the walls. As 	 increases (	→ ∞ means the walls are almost
insulated) the induced magnetic field contours show the behaviour of solution of MHD flow with
insulated walls. In the figures, the notations VC and IW denote variable wall conductivity and
insulated wall in the MHD duct flow contours, respectively.

To see the effect of increase in M , we present Figures 13–16 for showing equal velocity and
induced magnetic field lines, respectively, for M = 20, 300 and for conductivity parameter 	 = 0.
In the velocity curves, we notice that the flow is separated symmetrically in the y-direction. This
is the effect of applied magnetic field in the direction of x-axis and the pure conductivity of the
wall (	 = 0). As M increases the separation is more pronounced, the fluid is stagnant at the centre
region whereas close to the boundaries at y = ± 1 boundary layers are formed.

In Figures 17–20, a similar behaviour for increasing M is observed for velocity and induced
magnetic field for 	 = 5. One can notice from Figures 15 and 19 that, the higher the conductivity
of the walls is the more stagnant region at the centre region of the duct for the fluid.

5. CONCLUSION

The two-dimensional MHD duct flow equations that are of convection–diffusion type, are solved
by using BEM with the time-dependent fundamental solution. The BEM formulation of MHD
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flow equations in a duct with arbitrary wall conductivity is given in such a way that the resulting
equations are solved as a whole with coupled boundary conditions. The effects of values of
Hartmann number and wall conductivity parameter are visualized in terms of graphics showing
the characteristics of MHD duct flow.
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